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Abstract

Targeted nanoparticles are being pursued for a range of medical applications. Here, we utilized 

targeted nanoparticles (synthetic platelets) to halt bleeding in acute trauma. One of the major 

questions that arises in the field is the role of surface ligand density on targeted nanoparticles’ 

performance. We developed intravenous hemostatic nanoparticles (GRGDS-NP1), and previously 

demonstrated their ability to reduce bleeding following femoral artery injury and increase survival 

after lethal liver trauma in the rat. These nanoparticles are made from block copolymers, 

poly(lactic-co-glycolic acid)-b- poly-ι-lysine-b-poly(ethylene glycol). Surface-conjugated 

targeting ligand density can be tightly controlled with this system, and here we investigated the 

effect of varying density on hemostasis and biodistribution. We increased the targeting peptide 

(GRGDS) concentration 100-fold (GRGDS-NP100) and undertook an in vitro dose-response study 

using rotational thromboelastometry (ROTEM), finding GRGDS-NP100 hemostatic nanoparticles 

were efficacious at doses at least 10-fold lower than the GRGDS-NP1. These results were 

recapitulated in vivo, demonstrating efficacy at 8-fold lower concentration after lethal liver 

trauma. 1-hour survival increased to 92%, compared to a scrambled peptide control, 45% 

(OR=14.4, 95% CI=[1.36, 143]), a saline control, 47% (OR=13.5, 95% CI=[1.42, 125]), and 

GRGDS-NP1, 80% (OR=1.30, n.s.). This work demonstrates the impact of changing synthetic 

platelet ligand density on hemostasis, and lays the foundation for methods to determine optimal 

ligand concentration parameters.
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INTRODUCTION

Targeted nanotherapeutics have been developed for a broad range of medical 

applications.1–3 Factors that influence targeting efficacy include ligand-receptor affinities4, 

heteromultivalent ligand targeting strategies5, ligand presentation (linkers)6–8, as well as 

targeting ligand density. Studies to determine optimal surface ligand densities have 

demonstrated unique challenges specific to each material, ligand and application 

combination.9–15 We have previously developed intravenously injectable nanoparticles that 

augment hemostasis after injury.16, 17 In order to further optimize these nanoparticles for 

platelet targeting, reliable methods are needed that allow for tuning and measuring the effect 

of targeting-ligand densities.

These hemostatic nanoparticles are made of biodegradable block copolymers, reducing the 

risk of long-term inflammatory reactions. They consist of a nanoparticle core of 

biodegradable block copolymer of poly(lactic-co-glycolic acid) (PLGA) and poly-ι-lysine 

(PLL) with poly(ethylene glycol) (PEG) arms terminated with arginine-glycine-aspardic 

acid (GRGDS)-based targeting ligands. GRADSP ligands are used as a scrambled peptide to 

control for nonspecific actions of the particles (Scrambled-NPs). For research purposes, the 

nanoparticles have been loaded with coumarin-6, a fluorescent dye that allows us to track 

their biodistribution as previously described.16, 17

We previously investigated the role of targeting peptide length and PEG arm length on the 

efficacy of these hemostatic nanoparticles (NP’s), but the impact of ligand density on this 

system has not yet been addressed.17 From the literature, ligand density is known to play a 

critical role in targeting of nanoparticles. 9–13 Gu et al. developed a method to precisely 

engineer targeting-ligand-tunable nanoparticles for prostate cancer drug delivery and 

identified the narrow conjugation ratio that optimized targeting (5% for this application).9 

Fakhari et al. varied the ligand density of Cyclo-(1,12)-PenITDGEATDSGC (cLABL) on 

PLGA nanoparticles to optimize the targeting of intercellular adhesion molecule-1 

(ICAM-1), and found that the optimal density was roughly (50:50), and that particles with 

higher conjugation density performed worse.13 In all cases, the “optimal” conjugation of 

targeting ligand was highly application and condition-specific. In terms of the RGD-GPIIb/

IIIa interaction that our nanoparticles utilize to augment platelet-platelet aggregation, there 

is evidence suggesting that receptor density may play a large role in determining the nature 

and strength of this interaction. 15 Coller et al. found that platelet binding to high density 

fibrinogen prevents aggregation of platelets to a plate through “paradoxical loss of luminal 

receptors”.15

Several groups, including our own, have investigated the concept of hemostatic particles to 

mitigate complications with sourcing, storage, immunocompatibility, and administration in 

the field of blood-product transfusions. These particles have shown vast promise along with 

an array of challenges.16–24 These challenges include establishing a small homogenous 

particle size20, avoiding promotion of nonspecific aggregation25, making design choices 

about targeting ligands, and hetero-multi-functionality5, 26, optimizing targeting-linker 

length17, 19, and demonstrating efficacy in both in vivo16, 17, 27 and relevant in vitro 

models.21, 28
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Trauma is the leading cause of death for individuals between ages 1–44, and uncontrolled 

hemorrhage accounts for nearly one third of trauma-associated mortality.29 In combat, 

injuries can be especially severe and can be exacerbated by a prolonged pre-hospital phase, 

defined as the time between injury and admission to the hospital.30, 31 Recently, due to the 

advancement of body armor and changing warfare paradigms, the military has observed 

increased numbers of extremity injuries and internal (noncompressible) injuries (e.g. 

junctional, blast, central nervous system).30, 32, 33

We have previously shown that intravenously administered hemostatic nanoparticles 

(GRGDS-NP1) reduce bleeding times after femoral artery injury and increase survival after 

lethal liver trauma in the rat.16, 17 Here, our challenge was to develop a method for 

reproducibly controlling nanoparticle surface ligand conjugation and determine the impact 

of this change on hemostasis. We tested this change in both an in vitro assay, rotational 

thromboelastometry (ROTEM), and an in vivo model of lethal liver trauma. A dose-response 

study was undertaken utilizing ROTEM, and then applied in a lethal liver trauma in the rat. 

This work demonstrates the impact of changing synthetic platelet ligand density on 

hemostasis, and lays the foundation for methods to determine optimal ligand concentration 

parameters, providing a critical step toward translation of this nanotechnology.

METHODS

Nanoparticle Synthesis

PLGA (Resomer 503H) was purchased from Evonik Industries. Poly-ι-lysine (500–4000 Da 

MW) and PEG (~4600 Da MW) were purchased from Sigma Aldrich. All reagents were 

ACS grade and were purchased from Fisher Scientific. PLGA-PLL-PEG coblock polymer 

was made using standard bioconjugation techniques as previously described.16, 17, 38, 39

PLGA-PLL-PEG (1 g) was dissolved in anhydrous DMSO to a concentration of 100 mg/ml. 

Oligopeptides (25 mg GRGDS or GRADSP) was dissolved in 1 ml DMSO and added to the 

stirring polymer solution. This was reacted for 3 hours, and then transferred to dialysis 

tubing (SpectraPor 2 kDa MWCO). Dialysis water was changed every half hour for 4 hours 

with Type I D.I. water. The product was then snap-frozen in liquid nitrogen and lyophilized 

for 2–5 days.

The resulting quadblock copolymer PLGA-PLL-PEG-GRGDS was then dissolved to a 

concentration of 20 mg/ml in acetonitrile (120 mg/6 ml). This solution was added dropwise 

to a stirring volume of PBS. Precipitated nanoparticles form as the water-miscible solvent 

dissipates. Particles were collected using a coacervate precipitation method. Briefly, one 

mass equivalent of dry poly(acrylic acid) was added to the stirring particle suspension. 15ml 

of 1% w/v pAA was then added slowly to the stirring suspension until flocculation occurs. 

After 5 minutes, the flocculated particles were collected by centrifugation at 500g, and 

rinsed 3 times with 1% pAA (centrifuging @ 500 g, 2m, 4C between rinses). On the final 

rinse, particles were resuspended with D.I. water, snap-frozen and lyophilized for 2–5 days. 

Particles were resuspended in PBS and briefly sonicated at 4W to a total energy of 50 J 

using a probe sonicator (VCX-130, Sonics & Materials, Inc.) prior to use.
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Characterization

As previously demonstrated, successful conjugation of PLL, PEG and peptide ligands was 

confirmed using UV-spectroscopy, 1H-NMR and amino acid analysis HPLC (BioRad, 

Varian and Shimadzu respectively).16 Nanoparticles from 5 independent syntheses batches 

were characterized for size distribution using dynamic light scattering (90Plus, Brookhaven 

Instruments Corporation) and zeta potential (Zeta Pals, Brookhaven Instruments 

Corporation). Reported figures from DLS are given as number average. Scanning electron 

microscopy was performed to visualize particle morphology (Hitachi S4500).

Amino acid analysis (AAA) was used to quantify the GRGDS peptide conjugation to the 

triblock polymer PLGA-PLL-PEG. The outcome arg:lys ratio was used to measure this 

relative conjugation efficiency. Briefly, a 5 mg aliquot of polymer was hydrolyzed for 24 h 

in a hydrolysis/derivitization workstation (Eldex Laboratories, Inc., Napa, CA). The 

hyrolysate was then neutralized with a redrying solution (ethanol: water: triethylamine in a 

2:2:1 ratio) and derivitized with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, using 

the Water’s AccQ-Tag system. These samples were run on an HPLC (Shimadzu, with 

Water’s PicoTag Column) and measured using a fluorescence detector. Standard addition of 

known quantities of arg and lys to hydrolyzed samples was used to correct for polymer 

hydrolysate background.

Liver Trauma Model

All animal studies were performed in accordance with the Case Western Reserve University 

Institutional Animal Care and Use Committee (IACUC). Sprague Dawley rats (225–275g, 

Charles River) were anesthetized with intraperitoneal ketamine/xylazine (90:10 mg/kg, 

respectively), and injured according to the previously established liver injury model.16, 40–43 

In brief, after confirmation of complete anesthesia, the abdomen was accessed and the 

medial lobe of the liver was marked with an arch radius 1.3 cm from the suprahepatic vena 

cava using a handheld cautery device. Once marked, the tail vein was catheterized with a 

saline-flushed 24G × 3/4″ Excel Safelet Catheter. The medial liver lobe was then resected 

along the marked lines to create the injury. Treatments were administered via tail vein 

catheter immediately after injury and included saline, scrambled particles, and 

functionalized particles. All particle treatments were resuspended in a 0.5 ml PBS carrier 

solution.

The rats were allowed to bleed for 1 hour or until death, as confirmed by lack of both 

breathing and a palpable heartbeat. Before measuring blood loss, all rats were injected with 

a 1 ml lethal dose of sodium pentobarbital. The abdomen was then reopened and blood 

collected with pre-weighed gauze. The clot adherent to the liver was collected last as this 

usually caused additionally bleeding to occur. The resected liver was weighed and fixed in 

10% buffered formalin solution. Remaining liver, kidney, spleen and lungs were harvested 

and similarly preserved in 10% buffered formalin.

Biodistribution

Liver, kidney, spleen, lung and adherent clots were harvested and lyophilized for the 

biodistribution assay. The dry weight of the whole organ was recorded and 100–200 mg of 
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dry tissue was homogenized (Precellys 24) and incubated overnight in acetonitrile at 37 C. 

This dissolved any nanoparticles present in the tissue and left the C6 in the organic solvent 

solution. Tubes were then centrifuged at 15,000 g for 10 minutes to remove solid matter and 

supernatant was tested on the HPLC. Mobile phase was 80% acetonitrile, and 20% aqueous 

(8% acetic acid). Stationary phase was a Waters Symmetry C18 Column, 100Å, 5 μm, 3.9 

mm × 150 mm with fluorescence detection (450/490 nm ex/em). Based on the known C6 

loading and dosage, data is represented as percent (%) of particles injected.

Histology

Tissue samples from the left lobe of the liver (uninjured), medial lobe (injured) with 

adherent clot, lung, kidney, and spleen were fixed in formalin, soaked overnight in sucrose, 

frozen and cryosectioned to 20-μm thickness. Sections were imaged with an inverted 

fluorescence microscope (Zeiss Axio Observer.Z1). The DsRed filter was used to image 

tissue background fluorescence as a reference channel since staining with VectaShield 

DAPI, or H&E displaced nanoparticles from the tissue.

In vitro Assay

Coagulation assays, using Sprague Dawley rat blood, were performed using the ROTEM’s 

NATEM test in the presence of either saline, GRGDS-NPs, or scrambled GRADSP-NPs as 

previously described.16 The outcomes we considered include the standard ROTEM 

parameters clotting time (CT), clot formation time (CFT), the sum of the two (CT+CFT), 

and maximum clot firmness (MCF). CT is defined as the time from the start of the assay 

until the initial clotting is detected (thickness = 2mm). CFT is defined as the time between 

clot initiation until a clot thickness of 20 mm is detected. MCF is defined as the maximum 

thickness (in mm) that a clot reaches during the duration of the test. The dosing study was 

performed blood samples from 10 rats, starting with the highest concentration of particles 

(20 mg/ml, n=5), and titrating downward (2 mg/ml, n=7; 0.2 mg/ml, n=9; 0.02 mg/ml, n=9) 

until no effect was observed (0.002 mg/ml, n=3). Each sample was run in triplicate on the 

ROTEM, normalized to a saline control, and averaged for each rat.

Statistics

ANOVA with ad-hoc Tukey comparisons was used to analyze blood loss and ROTEM data 

(Minitab). 1-hour survival was analyzed with a binomial logistic regression with chi-squared 

tests between odds-ratios (SAS), and survival curves with a log-rank (Mantel-Cox) test. 

Quantification of histology was analyzed with two sample t-tests with Welch’s correction.

RESULTS

GRGDS conjugation density

Polymer nanoparticle characteristics were the same as previously described (Table 1, Figure 

1)16, except for the higher conjugation efficiency of RGD peptide to the activated PEG 

groups (Figure 2). This was accomplished primarily by performing the peptide conjugation 

before nanosphere formation and reacting in organic phase (anhydrous DMSO) rather than 

aqueous to form what we term the quadblock polymer (PLGA-b-p(lys)-b-PEG-b-GRGDS). 

After nanoparticle formation, peptide loading levels were measured with amino acid 
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analysis and the arginine to lysine ratio was determined to obtain the percentage of polymer 

chains with the GRGDS peptide. Nanoparticles made from the quadblock polymer had 2 

orders of magnitude more GRGDS than the nanoparticles made from triblock polymer used 

in the hemostatic nanoparticles tested previously (Arg:Lys ratio 4.35*10−3 compared to 

0.428).16 The high-RGD-loaded nanoparticles based on the quadblock polymer are referred 

to as GRGDS-NP100 and Scrambled-NP100, while the previously used triblock 

nanoparticles are referred to as GRGDS-NP1 and Scrambled-NP1.

In vitro test of GRGDS NP100

A dosing study with anticoagulated whole rat blood was performed to titrate the optimal 

dose of the NP100 nanoparticles (Figure 3). Rotational thromboelastometery (ROTEM) was 

used to determine clotting time (CT), clot formation time (CFT), and maximum clot 

firmness (MCF). Each sample consisted of 300 μl of anticoagulated blood, 20 μl of a particle 

dosing solution, and 20 μl of CaCl solution to replace the calcium in the blood and initiation 

coagulation. Previously, using the GRGDS-NP1 particles, we found that a particle dosing 

concentration of 2.5 mg/ml (blood concentration = 147 μg/ml) reduced clotting time in this 

in vitro model. When testing the GRGDS-NP100 particles at this same concentration, we 

observed a trend of increased total clotting time (CT+CFT), and a decrease in MCF, 

demonstrating an anticoagulant-like effect (Figure 3a). A dose response was then performed 

to titrate down to the optimal dose for the GRGDS-NP100 particles (Figure 3a–b). We found 

that the optimal dose was at least 10-fold lower, between 0.02–0.25 mg/ml (blood 

concentration = 1.2–14.7 μg/ml). Further testing 0.25 mg/ml at this concentration yielded a 

reduced total clotting time (CT+CFT, p=0.0346 versus saline), with no adverse impact on 

MCF (Figure 3c–d). There was no significant difference between the scrambled and 

GRGDS groups.

NP100 particles in liver injury model

Previous experiments with the low-peptide conjugated nanoparticles (GRGDS-NP1) at 20 

mg/ml concentration in a 0.5 ml carrier solution (40mg/kg) led to increased 1 hour survival 

(80% compared to 47% saline control) in a model of lethal liver trauma.16 When this 

experiment was repeated with high-peptide conjugated nanoparticles (GRGDS-NP100) at 

the same dose concentration (40 mg/kg) and ½ dose (20 mg/kg), survival time was 

drastically reduced from a mean time of 43 minutes (saline) to 28 minutes and 34 minutes, 

respectively, suggesting an adverse effect on the injury model. The effects of NP100 

particles appeared to be harmful until dosing down to 5 mg/kg, at which, 1 hour survival 

increased to 100% for the pilot study with n=3 animals (Figure 4a). Blood loss was also 

significantly reduced compared to the saline control (p=0.0115, Figure 4b).

We then scaled up the study (n=13) at this new dosage, 5 mg/kg. 1-hour survival was 

increased to 92.3% compared to a scrambled peptide control 45% (OR=14.4, 95% CI=[1.36, 

143], power=0.836) a saline control 47% (OR=13.5, 95% CI=[1.42, 125], power=0.888) and 

the previously reported hemostatic nanoparticles 80% (OR=1.3, n.s., Figure 5a). Blood loss, 

as measured by collecting intra-abdominal blood with pre-weighed gauze, was significantly 

decreased from a mean of 26.0 ml/kg (saline) to 19.25 ml/kg (GRGDS-NP100, p=0.0067, 

Figure 5b).
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Biodistribution

Compared to the previous liver injury study16, where 40 mg/kg of GRGDS-NP1 particles 

were injected, the present study only used 5 mg/kg of GRGDS-NP100 particles, 1/8 the 

previous mass. We find that similar proportions of the injected dose are found in the tissues, 

with the majority of particles being cleared through the liver (7.5–10.5%) or becoming 

entrapped in the clot (11%) or lungs (2–46%) as measured using an HPLC fluorescence 

assay for C6 (Figure 6). Less than 1% is found in the kidney and spleen, and the particles are 

rapidly cleared from the blood plasma, with only 2% remaining in circulation at the end of 

the 1-hour experiment.

Since biodistribution within anisotropic organs can have a heterogeneous distribution, a 

histological investigation was conducted, looking at the kidney, capillary beds of the deep 

lung, the uninjured left lobe of the liver, and the adherent clot attached to the injured medial 

lobe of the liver (Figure 7). We found that while the proportion of particles accumulating in 

the clot was similar between the GRGDS and scrambled particles (by HPLC), the GRGDS 

particles appeared in clusters rather than individual satellite particles (by histology), 

suggesting that they may be actively participating in platelet aggregation (Figure 7d). The 

number of particles found within the clot (11% injected dose), while a small mass, 

represents a large number of particles, 9.2×109, or a number equivalent to ~50% of the total 

circulating platelets in a 250 g rat (assuming: nanoparticle density, 1.3 g/cm3; rat blood 

volume, 68.6 ml/kg; normal rat platelet concentration 1.180×109/ml)44, 45

The distribution of particles to the capillary beds of the lung was significantly smaller than 

expected for the GRGDS group (Figure 7b), suggesting that the large quantity of particles 

found in the GRGDS-NP100 group, by the HPLC assay of the whole lung tissue, is not 

collected in the capillary beds, and must be accumulating in higher order branches.

DISCUSSION

Internal hemorrhage is currently treated with a combination of i.v. blood products with or 

without additional administration of soluble clotting factors, such as fibrinogen or 

recombinant factor VIIa.35, 46–48 Unfortunately, resuscitative strategies involving blood 

products have the drawbacks necessitating donor sources and refrigeration.46 They also may 

carry the risk for immune responses and suffer from loss of hemostatic activity during 

storage.46 These issues limit the application in first responder situations, which is 

exceptionally important because early intervention is the best predictor of survival following 

trauma. We developed a synthetic substitute for platelet administration to mitigate these 

complications.

We previously showed that administration of GRGDS-NP1 nanoparticles significantly 

improve survival after lethal liver trauma.16 In this first generation system, the GRGDS 

peptide was crucial for function of these nanoparticles binding with the GIIb/IIIa receptor on 

activated platelets to form mechanically robust platelet plugs. In this work, we have gone 

onto investigate the role that peptide density plays in the efficacy and safety of these 

hemostatic nanoparticles. Here, we have increased the targeting ligand concentration on our 

nanoparticles 100-fold and achieved a 92% survival rate when administering GRGDS-
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NP100 (5 mg/kg) compared to 80% from the previous work. The higher peptide-conjugated 

particles, GRGDS-NP100, led to significantly increased survival and significantly reduced 

blood loss at a concentration 8-fold lower than the dose required for the previous GRGDS-

NP1 formulation. 16 This finding is incredibly important because it suggests that peptide 

concentration is a critical variable, and demonstrates the significant impact on effective 

nanoparticle dosage by modulating targeting ligand concentration.

We also found blood loss was significantly reduced with the GRGDS-NP100 at 5 mg/kg. 

This is a significant finding as it continues to show that intravenous hemostatic nanoparticles 

can augment the clotting process, and that this can produce a large impact on survival. 

Furthermore, by reducing the effective dose, we also found that we can improve safety by 

having very few particles in non-injured tissues such as the lungs. Optimizing the targeting 

ligand is critical for the safety and efficacy of this system.

At higher doses (>5 mg/kg), it is evident that the GRGDS-NP100 particles have an adverse 

effect, substantially reducing mean survival time in the lethal liver trauma. These in vivo 

findings are recapitulated by our in vitro observations, that higher doses of the GRGDS-

NP100 hemostatic nanoparticles actually adversely impact hemostasis. Specifically, we find 

that higher doses appear to inhibit the standard ROTEM parameters of clotting time and, to a 

lesser degree, maximum clot firmness. This sort of response, where a dose that is too high or 

too low is not effective, has been previously reported.15, 17

These observations are likely the result of a saturation effect of the endogenous platelets. 

Too many platelet-bound nanoparticles could theoretically sterically hinder or saturate the 

receptors on the activated platelets leading to reduced platelet-platelet interactions and 

inhibition of their aggregation. These findings suggest that titrating the correct dosing in 

vitro will be crucial as this technology moves forward into large animal and potentially 

clinical trials.

We previously found that accumulation of nanoparticles in the lungs was independent of 

peptide targeting, with ~2 mg dose accumulation in the lung for both the GRGDS-NP1 and 

Scrambled-NP1 particles.16 However, peptide density does appear to have an effect, with a 

higher percentage of injected GRGDS-NP100 accumulating in the lungs than scrambled-

NP100, but at smaller total particle mass with the GRGDS-NP100 (0.57 mg) than the 

GRGDS-NP1 (2 mg) due to the lower effective dose. Lung accumulation was further 

investigated histologically and revealed extremely few, sparsely distributed nanoparticles in 

sections of the deep capillary beds of the lungs. Virtually no particles were found in the 

capillary beds of the deep lung tissue, where potential complications could arise as a result 

of nanoparticle aggregates.49–51 It is possible that if particles are associating with clots, as 

has been previously suspected16, 52, 53, and are subsequently shed from the injury site, these 

may be too large to reach the deep lung and are likely being incorporated in the higher order 

vasculature of the lung. The increased number of GRGDS-NP100 particles found in the lung 

in this study would therefore suggest a stronger clot-targeting effect compared to the 

scrambled-NP100, but has the disadvantage of accumulating in what appears to be clots in 

the lung. It may be possible to ameliorate these effects by changing the route of 

administration to one that directly feeds the injury site. Regardless, the question to answer 
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will be whether or not these particles antagonize pulmonary function (e.g. pulmonary artery 

pressure) or increase risk for pulmonary embolism. It is clear that the uptake of particles in 

the various tissues can be widely heterogeneous, and further investigations are required to 

determine the impact of nanoparticles on pulmonary function and assess the risk for 

pulmonary embolism development.

Optimizing targeting ligand conjugation densities to increase targeting potential of 

nanotherapuetics is critical to efficacy and safety of these systems.7–12 It is clear that more 

in not always better.9, 12, 13 Here, we presented a method to tune the density of targeting 

ligands presented on the surface of the intravenous hemostatic nanoparticles, by producing 

them with blends of the GRGDS-NP100 and the nonfunctionalized pegylated polymer, 

PLGA-PLL-PEG. While we developed our methods independently in our lab, other groups 

have taken similar approaches previously.9, 54 Unsurprisingly, this method is more efficient, 

repeatable, and allows for greater control over peptide conjugation than other potential 

approaches such as tuning the stoichiometry or other reaction conditions of the conjugation 

chemistry.9 Interestingly the scrambled peptide, GRADSP, had a slightly higher conjugation 

efficiency in aqueous phase relative to GRGDS, while the GRADSP peptide had a slightly 

lower conjugation efficiency in organic relative to GRGDS, possibly suggesting an 

interaction of the additional hydrophobic proline residue during this reaction in the different 

phases.

One can imagine that functionalized polymer (PLGA-b-p(lys)-b-PEG-b-GRGDS) can be 

blended with the terminally pegylated polymer (PLGA-b-p(lys)-b-PEG), to accurately tune 

the peptide density. As documented by Gu et al.9 the “optimal” window can be extremely 

narrow, and further research is indicated to fully determine optimal blend and dose 

parameters. We have shown here that ROTEM is a potential assay for elucidating the effects 

of these changes in an in vitro system using whole blood, and that the same dose-

relationship trends are observed in an in vivo model of lethal liver trauma.

CONCLUSION

Here, our challenge was to develop a method for reproducibly controlling nano-scale surface 

ligand conjugation and determine the impact of this change on hemostasis. We found using 

ROTEM the efficacious dose of GRGDS-NP100 was 10-fold lower than with previously 

recorded with GRGDS-NP1, and this result was recapitulated in vivo, after lethal liver 

trauma in the rat, showing efficacy at 8-fold lower concentration. Moving this technology 

toward clinical trials will require validation of the initial dose before proceeding. In vitro 

ROTEM testing with human blood may be one method for ascertaining an initial dosage 

estimate as well as provide a mechanism for optimizing surface ligand concentrations. This 

work demonstrates the potential utility of nanomedicine in addressing hemorrhage after 

lethal trauma. We have demonstrated the impact of, and the methods for, tightly control 

surface ligand density to optimize hemostatic efficacy.
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Figure 1. 
SCANNING ELECTRON MICROSCOPY. Image of nanoparticles under SEM (Hitachi 

S4500).
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Figure 2. 
AMINO ACID ANALYSIS. Peptide conjugation efficiency Arg:Lys ratio. Peptide 

conjugation levels are approximately 100-fold higher when the conjugation reaction is 

performed in DMSO instead of aqueous phase. This leads to the nomenclature, NP100 and 

NP1 for the organic and aqueous phase polymers respectively. Error bars denote SEM.

Shoffstall et al. Page 13

Biomacromolecules. Author manuscript; available in PMC 2014 August 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
IN VITRO DOSE RESPONSE GRGDS-NP100. a–b) Total clotting time (CT+CFT) and 

maximum clot firmness (MCF) dose-responses, recapitulated the in vivo response observed: 

high doses adversely impact clotting parameters (increase CT+CFT; decrease MCF). This is 

observed until dosing down to 0.02–0.2 mg/ml. C–D) 0.25 mg/ml was then further tested 

directly against a scrambled-NP100 control (n=6). CT+CFT was reduced compared to saline 

(p=0.0346), with no significant impact on MCF. Dotted lines denote normalization to the 

saline-treated controls values. Error bars denote SEM.
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Figure 4. 
IN VIVO DOSE RESPONSE GRGDS-NP100. Dose response with GRGDS-NP100 in rat 

liver injury model (n=3 for pilot study). b) Percentage of animals surviving to 1-hour is 

reduced in the 40 mg/kg and 20 mg/kg groups, but increased in the 5 mg/kg dose. b) Blood 

loss is significantly reduced in the 5 mg/kg dose, and not significantly changed with either 

40 mg/kg or 20 mg/kg doses compared to the saline control. Error bars denote SEM.
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Figure 5. 
LIVER INJURY RESULTS NP100. Rat medial liver injury model at 5 mg/kg dose. a) 1-

hour (endpoint) survival was increased to 92%, compared to a scrambled peptide control, 

45% (OR=14.4, 95% CI=[1.36, 143]), a saline control, 47% (OR=13.5, 95% CI=[1.42, 

125]), and GRGDS-NP1, 80% (OR=1.30, n.s.). Survival curves display increased survival 

with GRGDS-NP100 compared to the scrambled and saline groups, log-rank (Mantel-Cox) 

test, p=0.0362. b) Blood loss was significantly reduced in the GRGDS-NP100 group 

compared to saline (p=0.0067). Error bars denote SEM.
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Figure 6. 
BIODISTRIBUTION (HPLC ASSAY). An assay for fluorescent C6 was performed using 

HPLC. a) There is a large proportion of nanoparticles in the lungs for the targeted GRGDS 

group (~50%). The liver accumulates 7.5–10.5% of the injected dose (GRGDS, scrambled 

respectively), while ~11% becomes entrapped in the adherent clot found in the abdominal 

cavity post-mortem, regardless of the peptide group. Less than 1% is found in the kidney 

and spleen, and the particles are rapidly cleared from the blood plasma, with only 2% 

remaining in circulation at the end of the 1-hour experiment. b) However, due to 8x lower 

dose with NP100, there are fewer nanoparticles by mass in the lungs compared to the NP1. 

Error bars denote SEM.
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Figure 7. 
HISTOLOGY AND QUANTIFICATION. Histology was performed on the kidneys, 

uninjured left lobe of the liver, lungs, and injured medial lobe of the liver with adherent clot 

intact. Sections are 20 μm, and were not stained to prevent displacement of the 

nanoparticles. Quantification of the particles is measured in triplicate for n=3 rats per group, 

and represented as pixels/mm2. a) Kidneys show no significant differences between 

treatment groups, b) Uninjured liver (left lobe), contains higher density of particles in the 

scrambled group compared to GRGDS (p=0.0467). c) Lungs show a larger proportion of 

particles accumulating in the GRGDS group compared to scrambled, d) Clot adherent to 

remaining liver. Green = coumarin-6 (C6) loaded hemostatic nanoparticles; Red = Tissue 

background fluorescence (DsRed filter) used as reference channel. While the concentration 

of particles in the adherent clot is equal between groups, the particles in the GRGDS group 

appear as clusters, while the scrambled particles appear evenly dispersed. Error bars denote 

SEM.
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Table 1

NP1 and NP100 Characterization: Size and Zeta Potential

Nanoparticle formulation DLS; no. avg. dia. (nm; mean ± SD) Zeta potential (mV; mean ± SD)

GRGDS-NP1 499.4 ± 95.9 −22.6 ± 2.1

GRGDS-NP100 574.9 ± 196. 5 −16.7 ± 5.5

GRADSP-NP1 535.6 ± 133.8 −24.8 ± 6.2

GRADSP-NP100 611.4 ± 219.2 −14.7 ± 2.5
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